How to create Credit card number validation with JavaScript

Credit cards are becoming more popular in the online world, and the validation of credit card number is an issue that the online payment portals are concerning, but most of the solutions are done in the server-side, today jsB@nk would introduce to you a solution performed in JavaScript.

This solution can be done through Luhn algorithm (developed by Hans Peter Luhn) based on the original features of a credit card number. Please read the full post for the details of this solution.


Sampled by © JavaScriptBank.com

Credit cards on the web sites have become just about as ubiquitous as sign-in forms. One of my favorite moments in computer science was learning the algorithm for determining a valid credit card number. The process doesn't involve making a call to a server or checking accompanying information, just a basic algorithm that uses a check digit to determine if the credit card number is in the correct format.

Identifier format

Credit card numbers, just like other magnetic stripe card, have an identifier format that is defined in ISO/IEC 7812. The format for such identifiers is made up of three parts:

  1. Issuer Identification Number (IIN) - an identifier indicating the institution that issued the number. The first digit indicates the type of institution issuing the number (for instance, banks are either 4 or 5, so all credit card numbers begin with one of these). The IIN contains six digits.
  2. Account Number - an identifier between 6 and 12 numbers long, inclusive.
  3. Check Digit - a single digit to validate the sum of the identifier.

Identifiers of this format can be between 13 and 19 digits long and used for any number of purposes, though most people deal strictly with credit card numbers.

Luhn algorithm

Hans Peter Luhn, a scientist at IBM, developed Luhn algorithm to protect against unintentional mistakes in numeric identifiers (it is not a secure algorithm). This algorithm is the basis for magnetic strip identification cards, such as credit cards, as defined in ISO/IEC 7812.

Luhn algorithm itself is quite simple and straightforward. Starting at the last digit in the identifier (the check digit), double every other digit's value. If any of the doubled digits are greater than nine, then the number is divided by 10 and the remainder is added to one. This value is added together with the appropriate values for every other digit to get a sum. If this sum can be equally divisible by 10, then the number is valid. The check digit serves the purpose of ensuring that the identifier will by equally divisible by 10. This can be written in JavaScript as follows:

//Luhn algorithm identifier verification
//MIT Licensed
function isValidIdentifier(identifier) {

    var sum     = 0,
        alt     = false,
        i       = identifier.length-1,
        num;

    if (identifier.length < 13 || identifier.length > 19){
        return false;
    }

    while (i >= 0){

        //get the next digit
        num = parseInt(identifier.charAt(i), 10);

        //if it's not a valid number, abort
        if (isNaN(num)){
            return false;
        }

        //if it's an alternate number...
        if (alt) {
            num *= 2;
            if (num > 9){
                num = (num % 10) + 1;
            }
        } 

        //flip the alternate bit
        alt = !alt;

        //add to the rest of the sum
        sum += num;

        //go to next digit
        i--;
    }

    //determine if it's valid
    return (sum % 10 == 0);
}

This method accepts a string identifier as its argument and returns a Boolean value indicating if the number it represents is valid. The argument is a string to allow easier parsing of each digit and to allow leading zeroes to be significant. Sample usage (sorry, no real numbers here):

if (isValidIdentifier("0123765443210190")){
    alert("Valid!");
}

Yes, I did test this on my own credit card numbers as a test. No you can't have those sample files. :)

Validation not verification

Keep in mind that Luhn algorithm is a validating algorithm, not a verifying one. Just because an identifier is in a valid format doesn't mean that it's a real identifier that's currently in use. Luhn algorithm is best used to find unintentional errors in identifiers rather than providing any level of security. As with other parts of my computer science in JavaScript series, I'm not condoning its usage in real web applications for any reason, just introducing it as an interesting computer science topic that can be implemented in JavaScript.

Language
Translate this page to English Translate this page to French Translate this page to Vietnamese

Recent articles
Insights for Advanced Zooming and Panning in JavaScript Charts
How to open a car sharing service
Vue developer as a vital part of every software team
Vue.js developers: hire them, use them and get ahead of the competition
3 Reasons Why Java is so Popular
Migrate to Angular: why and how you should do it
The Possible Working Methods of Python Ideology
JavaScript Research Paper: 6 Writing Tips to Craft a Masterpiece
Learning How to Make Use of New Marketing Trends
5 Important Elements of an E-commerce Website


Top view articles
Adding JavaScript to WordPress Effectively with JavaScript Localization feature
Top 10 Beautiful Christmas Countdown Timers
Top 10 Best JavaScript eBooks that Beginners should Learn
65 Free JavaScript Photo Gallery Solutions
16 Free Code Syntax Highlighters by Javascript For Better Programming
Best Free Linux Web Programming Editors
Top 50 Most Addictive and Popular Facebook mini games
More 30 Excellent JavaScript/AJAX based Photo Galleries to Boost your Sites
Top 10 Free Web Chat box Plug-ins and Add-ons
The Ultimate JavaScript Tutorial in Web Design


Free JavaScript Tutorials & Articles
at www.JavaScriptBank.com